Modeling the Risk of Software Faults

Prepared for
NASA Independent Verification and Validation Facility
FAU Technical Report TR-CSE-00-06
Taghi M. Khoshgoftaar®
Edward B. Allen

Florida Atlantic University
Boca Raton, Florida USA

February 2000

*Readers may contact the authors through Taghi M. Khoshgoftaar, Empirical Software Engineer-
ing Laboratory, Dept. of Computer Science and Engineering, Florida Atlantic University, Boca Ra-
ton, FL 33431 USA. Phone: (561)297-3994, Fax: (561)297-2800, Email: taghi@cse.fau.edu, URL:

www.cse.fau.edu/esel/.

FAU Technical Report TR-CSE-00-06

Executive Summary

Development teams apply various techniques to improve software reliability,
such as independent verification and validation (1v&V), reengineering, extra re-
views, additional testing, and strategic assignment of personnel. Due to resource
and time constraints, one must often target reliability enhancement activities to
high-risk modules. Software quality models predict which modules should be tar-
geted.

The product of a software quality model is predictions. For example, a model
could be designed to do one of the following.

e Predict membership in fault-prone class for each module
e Predict the number of faults expected in each module

With predictions in hand, project managers can prioritize and target software en-
hancement activities toward those modules that need improvement the most.

Cost-effective software quality models must be developed through a disciplined
methodology that balances accuracy with practical data collection. Drawing on
experience with data from a variety of software development organizations, our
methodology is based on the following principles.

Measure the past to predict the future.

Exploit your gold mines.

Software metrics are candidate predictors.

Linear models are not enough.

Empirical validation must be realistic.

This report provides an explanation of each principle, illustrated by case studies
by the Empirical Software Engineering Laboratory at Florida Atlantic University.

Keywords: software reliability, faults, fault-prone modules, software metrics, clas-
sification, regression models, multiple linear regression, curvilinear regression

FAU Technical Report TR-CSE-00-06 3
1 Introduction

Development teams apply various techniques to improve software reliability, such as
independent verification and validation (1v&V), reengineering, extra reviews, additional
testing, and strategic assignment of personnel. Due to resource and time constraints,
one must often target reliability enhancement activities to high-risk modules. Software
quality models predict which modules should be targeted.

The product of a software quality model is predictions. For example, a model could

be designed to do one of the following.

e Predict membership in fault-prone class for each module

e Predict the number of faults expected in each module

With predictions in hand, project managers can prioritize and target software enhance-
ment activities toward those modules that need improvement the most.

Cost-effective software quality models must be developed through a disciplined
methodology that balances accuracy with practical data collection. Drawing on experi-
ence with data from a variety of software development organizations, our methodology
is based on the principles presented in the following sections, and illustrated by case
studies performed by the Empirical Software Engineering Laboratory at Florida Atlantic

University.

2 Measure the past to predict the future

Software development is inherently a people-intensive enterprise, and software quality

is influenced by many factors that vary tremendously among organizations. To achieve

FAU Technical Report TR-CSE-00-06 4

useful accuracy, software quality models must be calibrated for each specific development

environment [29]. This is achieved through the following steps.

1. Analyze historical project where reliability is known.

[Sv]

. Predict current project where reliability is in future.

(]

. Target reliability enhancement activities now, e.g., IV&V.

A case study acquires historical data on one or more projects. We construct models
that could have been developed during the historical project, and calculates assessments
that could have been made. The accuracy of those assessments is then evaluated against
actual experience. This gives us confidence in predictions for a current project. The
return-on-investment (ROI) of using a model can be calculated based on the expected
costs of enhancement activities initiated by using the model, the effectiveness of finding

faults, and the expected costs of not discovering faults early [14].

3 Exploit your gold mines

Many software development organizations have very large databases for project manage-
ment, configuration management, and problem reporting which capture data on source
code and individual events during development. We have found that these databases do
contain indicators of which modules will likely have operational faults [15]. Such data
bases are gold mines for software quality modeling.

Our approach to software quality modeling is aptly described as data mining [15],

especially when operational faults are rare. Data mining is most appropriate when one

FAU Technical Report TR-CSE-00-06 5

seeks valuable bits of knowledge in large amounts of data collected for some other purpose,
and when the amount of data is so large that manual analysis is not possible.

A recent status report [27] on the field of software measurement highlights gaps
between current research and practice. For example, practitioners want accurate, timely
predictions of which modules have high risk, but researchers have yet to find adequate,
widely applicable measures and models. Faults are a result of mistakes or omissions
by developers, and relevant human behavior in the workplace is notoriously difficult to
measure directly.

We take a more pragmatic approach. We capture relevant variation among modules
with practical metrics, even though the underlying human behavior is not well under-
stood. Instead of expensive, specialized data collection, we leverage existing databases
collected for other purposes, so that the marginal cost of data collection is modest. Rather
than waiting for researchers to formulate a general theory, we achieve useful accuracy by
empirically calibrating models to each local development environment.

Fayyad [3] defines knowledge discovery in databases as “the nontrivial process of
identifying valid, novel, potentially useful, and ultimately understandable patterns in
data.” Fayyad restricts the term data mining to one step in the knowledge-discovery
process, namely, extracting patterns or fitting models from data. Others use the term
more broadly. “Primary data analysis” in statistics is motivated by a particular set
of questions that are formulated before acquiring the data. In contrast, data mining
analyzes data that has been collected for some other reason. Hand [7] defines data mining
as “the process of secondary analysis of large databases aimed at finding unsuspected
relationships which are of interest or value to the database owners.”

Given a set of large databases or a data warehouse, Fayyad et al. give a framework

FAU Technical Report TR-CSE-00-06 6

/\

Data Warehouse

Measurements
Past Releases

S

1.Measure @ Target data

a

2. Select

a Clean data

& Evaluation data

l Current Release Measurements 3. Preprocess 0 Training data i
d}' @ Target data a

4. Transform

: Model
53 5. Data mining !
Clean data

’

4
I
ll
@ Transformed data /6. Evaluate | C— (Knowledge
i
¥ .
r -
t” é

4, Transform !

!

1.Measure

2. Select

3. Preprocess

Current Release

MDdB| :> Quality
Predlctlons

Developer

Figure 1: Exploit your gold mines

of major steps in the knowledge-discovery process [4]: (1) selection and sampling of
data; (2) preprocessing and cleaning of data; (3) data reduction and transformation;
(4) data mining; and (5) evaluation of knowledge. We apply Fayyad’s framework to
predicting software quality from software development databases. Our framework is

shown in Figure 1.

FAU Technical Report TR-CSE-00-06 7

Figure 1 has two similar tracks of processing steps. The upper track processes data
on past releases where fault data is known. The results of this track are an empirical
model, an assessment of its accuracy, and an interpretation of its structure. The lower
track processes data on a current release that is still under development, predicting which
modules will be fault-prone through the empirical model. The human figure in the corner
represents a developer who will make use of the predictions, the expected accuracy, and
the knowledge derived from the model’s structure.

In Figure 1, the Data Warehouse represents software development databases, such
as configuration management systems and problem reporting systems, irrespective of the
storage system implementation. A configuration management system is an information
system for managing multiple versions of artifacts produced by software development
processes. For example, most configuration management systems support storage and
retrieval of versions of source code. Other features may regulate changes to source code,
so that team members do not interfere with each other, and record the history of changes
for later review. A problem reporting system is an information system for managing
software faults from initial discovery through distribution of fixes. In other words, it
records events in the debugging process. Most developers of large software products use
such systems.

The first step measures available software development databases to derive variables
from source code, configuration management transactions, and problem reporting trans-
actions for one or more past releases. Step 2, Select, chooses data for study, resulting
in target data. Step 3, Preprocess, accounts for missing data and outliers in the target
data, resulting in clean data. Step 4, Transform, may extract features from the clean

data, and may transform data for improved modeling. The result is separate transformed

FAU Technical Report TR-CSE-00-06 8

data sets for training and for evaluation. Step 5, Data mining, builds a model based on
the training data. Step 6, Evaluate, assesses the model’s accuracy using the evaluation

data, and analyzes the model’s structure.

4 Software Metrics

4.1 One metric is not enough

Much of the literature on software metrics is aimed to demonstrate the value of individual
metrics. However, this does not fulfill our purpose: to build industrial-strength quality
models. Qur experience with modeling empirical data from industry has indicated that
a model with one software metric as the only independent variable does not have useful
accuracy and robustness. Lines of code is not enough. McCabe cyclomatic complexity is
not enough. The metric that is most highly correlated to faults is not enough.

Our recent case studies have demonstrated that multiple independent variables give
more accurate results than models with just one independent variable [10].

The cost of collecting many metrics from source code (or other software product),
rather than just a few, is not a practical problem for conventional metrics, because a
metric-analyzer software tool is capable of measuring many metrics in one pass. We have
found it is more effective to begin with many metrics, and then to apply data mining
techniques to choose those with statistically significant empirical relationships to faults.

Pragmatic considerations usually determine the set of available predictors. We do
not advocate a particular set of software metrics for software quality models to the

exclusion of others recommended in the literature. Because marginal data collection

FAU Technical Report TR-CSE-00-06 9

Table 1: Example code analyzers

McCabe tool McCabe Asso.
Logiscope Verilog S.A.
Datrix Bell Canada

Metrics Analyzer for C FAU

costs are modest, we prefer to apply data mining to a large well-rounded set of metrics
rather than limit the collection of software metrics according to predetermined research
questions.

Table 1 lists examples of source code analyzers that can measure many metrics in
one pass through the code. The Empirical Software Engineering Laboratory at Florida
Atlantic University has Logiscope, Datrix and its own Metrics Analyzer for C, for use in

software engineering research.

4.2 Code metrics are not enough

Failures are the combined result of the difficulty of the implementation job (product
attributes), the process applied to the job, and the usage of the product during operations.
These factors are rarely uniform over all modules. Code metrics measure only attributes
of the product, and thus, in most situations, this one dimension is not enough for accurate
robust software quality models.

The development histories of modules often differ radically. For example, modules
from early releases have been used or tested more than recently developed modules. A
stable module may have been developed by only one person, while other modules may

have been modified by many different programmers. Indicators of such variations can

FAU Technical Report TR-CSE-00-06 10

Table 2: Abstractions

Product:
Statements

Jall graph
Control flow graph
0-0O graphs
Process:

Reuse

Fault history

Staff experience or surrogate
Discovery:

Operational profile or surrogate

significantly improve model accuracy and robustness.

For example, our case studies have shown that a simple indicator of reuse from a
prior release can be a significant independent variable in both classification and regression
models [18].

A case study of the Joint Surveillance Target Attack Radar System, JSTARS [L3],
showed that the likelihood of discovering additional faults during integration and test in
a spiral life cycle can be usefully modeled as a function of the module history prior to
integration. In other words, in this case, process-related measures derived from configu-
ration management data and problem reporting data were adequate for software quality
modeling, without resorting to software product measurement tools and expertise.

Table 2 lists various abstractions that are the basis for measurement of product,
process, and usage metrics. Table 3 summarizes the candidate predictors used in a recent
classification case study [16]. This case study illustrates that collecting many predictor

metrics is indeed practical.

FAU Technical Report TR-CSE-00-06 11

Table 3: A Classification Case Study

Candidate predictors:
24 Product metrics:
— Call graph metrics
— Control flow graph metrics
— Statement metrics
14 Process metrics
4 Execution metrics

5 Linear models are not enough

In many cases, curvilinear models represent fault data better than linear models. For
example, Morgan and Knafl [25] modeled operational faults in a set of UNIX utility
programs based on various product and process metrics. They found that quadratic
terms and cross-product terms were significant. In other words, a multivariate linear
model was less appropriate for fault data in this case study than a curvilinear model.
In this section, we summarize two of our case studies which illustrate that linear
modeling is often not appropriate for real-world software metrics and software quality

data.

5.1 Classification-Tree Case Study

System description. We conducted a case study of a very large legacy telecommuni-
cations system [15]. This embedded computer application included numerous finite state
machines. Such systems require very high software reliability. A module consisted of a
set of related source code files. The software was written in a high level language using

the procedural development paradigm, and was maintained by professional programmers

FAU Technical Report TR-CSE-00-06 12

Table 4: Metrics Summary

Candidate predictors:
Product metrics:
2 Call graph metrics
13 Control flow graph metrics
9 Statement metrics

15 Process metrics

1 Deployment metric

in a large organization. The entire system had significantly more than ten million lines
of code. We studied data on new and updated modules in one release of the software.

This case study focused on faults discovered by customers after release as the software
quality factor. A module was considered fault-prone if any faults were discovered by
customers, and not fault-prone otherwise.

Faults discovered in deployed systems are typically extremely expensive, because,
in addition to down-time due to failures, visits to customer sites are usually required
to repair them. Fault data was collected at the module-level by the problem reporting
system.

Table 4 summarizes the metrics used in this case study, and Table 5 through Table 9
give detailed definitions. Some process metrics were available at end of beta testing.

Consequently, the predictions could be useful for planning reengineering in next release.

Classification-tree modeling. Figure 2 shows the classification tree generated by
CART [1] in this case study. See Appendix D for details on CART. A tree represents an

algorithm that classifies a module. Beginning at the top, an attribute of the module is

FAU Technical Report TR-CSE-00-06 13

Table 5: Call Graph Metrics

Symbol Description

CALUN@ Number of distinct procedure calls to others.

CAL2 Number of second and following calls to others,

CAL2 = CAL — CALUNQ where CAL is the total number of
calls
Table 6: Control Flow Graph Metrics
Symbol Description
CNDNOT Number of arcs that are not conditional arcs.
IFTH Number of non-loop conditional arcs, i.e., if-then constructs.
LOP Number of loop constructs.
CNDSPNSM Total span of branches of conditional arcs. The unit of measure
CNDSPNMX ﬁl:ﬁfﬁum span of branches of conditional arcs.
CTRNSTSM Total control structure nesting.
CTRNSTMX Maximum control structure nesting.
KNT Number of knots. A “knot” in a control flow graph is where arcs
cross due to a violation of structured programming principles.
NDSINT Number of internal nodes (i.e., not an entry, exit, or pending
node).
NDSENT Number of entry nodes.
NDSEXT Number of exit nodes.
NDSPND Number of pending nodes, i.e., dead code segments.
LGPATH Base 2 logarithm of the number of independent paths.
Table 7: Statement Metrics

Symbol Description
FILINCU@ Number of distinct include files.
Loc Number of lines of code.
STMCTL Number of control statements.
STMDEC Number of declarative statements.
STMEXE Number of executable statements.
VARGLBUS Number of global variables used.
VARSPNSM Total span of variables.
VARSPNMX Maximum span of variables.

VARUSDUQ

Number of distinct variables used.

FAU Technical Report TR-CSE-00-06

Table 8: Software Process Metrics

14

Symbol Description

DES_PR Number of problems found by designers

BETA_PR Number of problems found during beta testing

TOT_FIX Total number of problems fixed

DES_FIX Number of problems fixed that were found by designers

BETA_FIX Number of problems fixed that were found by beta testing in the
prior release.

CUST_FIX Number of problems fixed that were found by customers in the
prior release.

REQ_UPD Number of changes to the code due to new requirements

TOT.UPD Total number of changes to the code for any reason.

REQ Number of distinct requirements that caused changes to the mod-

SRC_GRO %leet increase in lines of code

SRC_MOD Net new and changed lines of code

UNQ_DES Number of different designers making changes

VLO_UPD Number of updates to this module by designers who had 10 or
less total updates in entire company career.

LO_UPD Number of updates to this module by designers who had between
11 and 20 total updates in entire company career

UPD_CAR Number of updates that designers had in their company careers

Table 9: Deployment Metric
Symbol Description

USAGE Deployment percentage of the module.

evaluated at each decision node (diamond). The associated threshold determines which
edge is taken to the next step. When the algorithm arrives at a leaf (circle), the module
is classified according to the label of the leaf.

Nodes 6 and 7 illustrate the nonlinear character of the data in this case study. Both
nodes evaluate the number of distinct file-includes (FILINCUQ). If FILINCUQ < 29,
then the module is predicted to be fault-prone; if 29 < FILINCUQ < 34, then the module

is predicted to be not fault-prone; and if 34 < FILINCUGQ), then the module is predicted

FAU Technical Report TR-CSE-00-06 15

i NFP Mot Fault-Prone
| FP Fault-Prone

i<> Decision Node

i O Leaf Node

NFP NFP NFP FP NFP FP NFP NFP FP

Figure 2: Classification tree case study

to be fault-prone. This models a non-linear non-monotonic relationship between file-
includes and faults.

Table 10 lists the accuracy of the model in terms of Type [and Type Il misclassifica-
tion error rates. A Type I misclassification is when a module is actually not fault-prone,
but the model predicts that the module is fault-prone. Conversely, a Type II misclassifi-
cation is when a module is actually fault-prone, but the model predicts that the module
is not fault-prone. The table shows results of three methods for estimating accuracy [11]:
resubstitution, crossvalidation, and data-splitting. We believe that data-splitting gives
the least biased estimate.

Other case studies by our research group have investigated the long-term usefulness

of fault models, and found that a model trained with one release of a telecommunications

FAU Technical Report TR-CSE-00-06 16

Table 10: Classification-tree accuracy

Misclassification rates
¢ Typel Typell
Product & Process Metrics 0.95

Resubstitution (fit) 25.8% 15.6%
Cross-validation (fit) 26.4% 25.9%
Data Splitting (‘test) 26.2% 28.9%

system still had useful accuracy for three subsequent releases [16, 17].

5.2 Curvilinear Regression Case Study

System description. We performed a case study of data communications software
using curvilinear regression to predict the number of faults [21]. The study examined
previously published data [22] on a set of 226 data communications programs. The
dependent variable was the number of errors in a program. The predictor was the number

of noncomment lines of code, LOC.

Curvilinear modeling. The form of the model was the following.
y = bo+ by LOC* + e (1)

Gaffney argued that b, = 4/3 [5]. This study estimated b, = 1.279 which was significantly
different from a linear model, i.e., b, = 1. Table 11 lists the estimated parameters for the
two curvilinear models. See Appendix F for details on nonlinear regression, including
curvilinear regression.

The analysis of variance in Table 12 shows that both models were significant at

a < 0.05. The analysis allocates total variation among the regression, and errors. The

FAU Technical Report TR-CSE-00-06 17

Table 11: Curvilinear models

Model Parameter Estimate Std Dev

LOC
bo 0.81 0.14
by 0.002 0.00
b, 1.279

LOCY?
bo 0.73 0.13
b, 0.002 0.00

Table 12: Analysis of variance (ANOVA)

Source df SS MS F
LOC"
Reg 1 23237 232.37 93.65

Error 220 545.87 2.48

Total 221 T78.23

LOC*?

Reg 1 442.22 442,22 171.98
Error 221 568.29 2.57

Total 222 1010.51

table lists degrees of freedom (df), sum of squares (SS), mean of squares (MS), and the
F' statistic.

Table 13 gives the accuracy of each model. A smaller average PRESS value means
better accuracy. Thus, the model with the estimated exponent yielded slightly better
quality of fit in this study.

Because the parameters of a nonlinear model are usually estimated to fit the data,
the importance of nonlinearity is an empirical issue. Linear relationships may be adequate
for some data sets. However, this case study illustrates that a nonlinear model is often

preferred.

FAU Technical Report TR-CSE-00-06 18

Table 13: Curvilinear-model accuracy

Model ~ Avg PRESS Adj R?
LOC™ 2.51 0.30
LOC? 2.66 0.44

5.3 Modeling

We advocate using a modeling method that is achieves the goals of the study and is
appropriate for the characteristics of the data. Classification techniques yield predictions
limited to fault-prone, or not. Regression techniques predict a quantity, such as the
number of faults. In general, for the same data, classification is more powerful than
regression because the result is less specific. However, management goals will determine
which is required.

Table 14 lists selected modeling techniques for classification and for regression. Rel-
evant appendices are noted (e.g., [B] refers to Appendix B). They are grouped into
statistical techniques, tree-based techniques, and machine-learning techniques. Other
supporting techniques are also listed. Note that curvilinear regression is a type of nonlin-
ear regression. The Empirical Software Engineering Laboratory team at Florida Atlantic
University has published case studies with each of the techniques listed. Table 15 lists
general modeling tools that are useful for the modeling techniques listed in Table 14. One
should note that these tools are readily available, supporting a wide variety of modeling

techniques.

FAU Technical Report TR-CSE-00-06

19

Table 14: Modeling Methods

Classification

Regression

Statistical
Logistic regression [B]
Discriminant analysis [C]

Tree-based
CART classification [D]
S-Plus reg with class rule
TREEDISC (CHAID)
Machine learning
CBR classification
Neural net classification
Genetic programming
Supporting techniques
Principal components [A]

Multiple linear regression [E]
Curvilinear regression [F|
Poisson regression [G]

CART regression
S-Plus regression

CBR interpolation
Neural net function
Genetic programming

Principal components [A]
Module-order modeling

[Relevant appendix is noted]

Table 15: Example Modeling Tools

SAS

(lassical statistics
TREEDISC

S-Plus

(lassical statistics
Tree-based models

CART

module in Systat

Tree-based models

MATLAB

Neural networks
Genetic programming
Fuzzy sets

SMART

developed by FAU

Case-Based Reasoning
Module-order modeling

FAU Technical Report TR-CSE-00-06 20
6 Empirical validation must be realistic

Due to the many human factors that influence software reliability, controlled experiments
to evaluate the usefulness of empirical models are not practical. Therefore, we take
the case study approach to demonstrate their usefulness in a real-world setting. To be
credible, the software engineering community demands that the subject of an empirical
study be a system with the following characteristics [33]. The subject of a validation case

study must be developed
e By a group, not by an individual
e By professionals, not by students
e In industry/government, not in laboratory
e As large as industry projects, not toy problem

Our case studies fulfill all of these criteria through collaborative arrangements with de-

velopment organizations.

7 Conclusions

Development teams apply various techniques to improve software reliability. Due to
resource and time constraints, one must often target reliability enhancement activities to
high-risk modules. Software quality models predict which modules should be targeted.
Cost-effective software quality models must be developed through a disciplined
methodology that balances accuracy with practical data collection. Drawing on ex-

perience with data from a variety of software development organizations, this report

FAU Technical Report TR-CSE-00-06 21

presents the principles that are the foundation of our methodology, and reviews relevant

case studies by the Empirical Software Engineering Laboratory at Florida Atlantic Uni-

versity. Collaboration between researchers and developers is the key to successful case

studies.

References

[1]

8]

[4]

[9]

[10]

L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and
Regression Trees. Chapman & Hall, London, 1984.

B. Efron. Estimating the error rate of a prediction rule: Improvement on cross-
validation. Journal of the American Statistical Association, 78(382):316-331, June
1983.

U. M. Fayyad. Data mining and knowledge discovery: Making sense out of data.
[EEE Ezpert, 11(4):20-25, Oct. 1996.

U. M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. The KDD process for extracting
useful knowledge from volumes of data. Communications of the ACM, 39(11):27-34,
Nov. 1996.

J. E. Gaffney, Jr. Estimating the number of faults in code. IEFE Transactions on
Software Engineering, SE-10(4):459-464, July 1984.

S. S. Gokhale and M. R. Lyu. Regression tree modeling for the prediction of software
quality. In H. Pham, editor, Proceedings of the Third ISSAT International Confer-
ence on Reliability and Quality in Design, pages 31-36, Anaheim, CA, Mar. 1997.
International Society of Science and Applied Technologies.

D. J. Hand. Data mining: Statistics and more? The American Statistician,
52(2):112-118, May 1998.

D. W. Hosmer, Jr. and S. Lemeshow. Applied Logistic Regression. John Wiley &
Sons, New York, 1989.

SAs. Institute. SAS/STAT software: The GENMOD procedure. Technical Report
p-243, SAS Institute, Inc., Cary, NC, 1994.

T. M. Khoshgoftaar and E. B. Allen. Multivariate assessment of complex software
systems: A comparative study. In Proceedings of the First International Conference
on Engineering of Complex Computer Systems, pages 389-396, Fort Lauderdale,
Florida USA, Nov. 1995. [EEE Computer Society.

FAU Technical Report TR-CSE-00-06 22

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

T. M. Khoshgoftaar and E. B. Allen. Classification of fault-prone software modules:
Prior probabilities, costs, and model evaluation. Empirical Software Engineering:

An International Journal, 3(3):275-298, Sept. 1998.

T. M. Khoshgoftaar, E. B. Allen, and J. Deng. Using regression trees to classify
fault-prone software modules. Technical report, Florida Atlantic University, Boca
Raton, Florida USA, Dec. 1999.

T. M. Khoshgoftaar, E. B. Allen, R. Halstead, G. P. Trio, and R. Flass. Process
measures for predicting software quality. Computer, 31(4):66-72, Apr. 1998.

T. M. Khoshgoftaar, E. B. Allen, W. D. Jones, and J. P. Hudepohl. Return on
investment of software quality models. In Proceedings 1998 IEEE Workshop on
Application-Specific Software Engineering and Technology, pages 145-150, Richard-
son, TX USA, Mar. 1998. IEEE Computer Society.

T. M. Khoshgoftaar, E. B. Allen, W. D. Jones, and J. P. Hudepohl. Data mining for
predictiors of software quality. International Journal of Software Engineering and
Knowledge Engineering, 9, 1999. Forthcoming.

T. M. Khoshgoftaar, E. B. Allen, W. D. Jones, and J. P. Hudepohl. Accuracy of
software quality models over multiple releases. Annals of Software Engineering, 6,
2000. Forthcoming.

T. M. Khoshgoftaar, E. B. Allen, W. D. Jones, and J. P. Hudepohl. Classification tree
models of software quality over multiple releases. IEEE Transactions on Reliability,
49(1), Mar. 2000. Forthcoming.

T. M. Khoshgoftaar, E. B. Allen, K. S. Kalaichelvan, and N. Goel. Early quality
prediction: A case study in telecommunications. IEEE Software, 13(1):65-71, Jan.
1996.

T. M. Khoshgoftaar, E. B. Allen, X. Yuan, W. D. Jones, and J. P. Hudepohl.
Assessing uncertain predictions of software quality. In Proceedings of the Sixth In-
ternational Software Metrics Symposium, pages 159-168, Boca Raton, Florida USA,
Nov. 1999. IEEE Computer Society.

T. M. Khoshgoftaar, E. B. Allen, X. Yuan, W. D. Jones, and J. P. Hudepohl.
Preparing measurements of legacy software for predicting operational faults. In

Proceedings: International Conference on Software Maintenance, pages 359-368,
Oxford, England, Aug. 1999. IEEE Computer Society.

FAU Technical Report TR-CSE-00-06 23

[21]

22]

23]

[24]

[25]

[29]

[30]
31]

32]

[33]

T. M. Khoshgoftaar and J. C. Munson. The lines of code metric as a predictor of
program faults: A critical analysis. In Proceedings: The Fourteenth Annual Inter-
national Computer Software and Applications Conference, pages 408-413, Chicago,
[linois USA, Oct. 1990. IEEE Computer Society.

B. A. Kitchenham. An evaluation of software structure metrics. In Proceedings of the
International Computer Software and Applications Conference (COMPSAC), pages
369-376, Chicago, IL, 1988. IEEE Computer Society.

P. A. Lachenbruch and M. R. Mickey. Estimation of error rates in discriminant
analysis. Technometrics, 10(1):1-11, Feb. 1968.

A. Mayer and A. M. Sykes. A probability model for analysing complexity metrics
data. Software Engineering Journal, 4(5):253-258, Sept. 1989.

J. A. Morgan and G. J. Knafl. Residual fault density prediction using regression
methods. In Proceedings of the Seventh International Symposium on Software Re-
liability Engineering, pages 87-92, White Plains, NY, Oct. 1996. IEEE Computer
Society.

R. H. Myers. Classical and Modern Regression with Applications. Duxbury Series.
PWS-KENT Publishing, Boston, 1990.

S. L. Pfleeger, R. Jeffery, B. Curtis, and B. A. Kitchenham. Status report on software
measurement. [EEE Software, 14(2):33-43, Mar. 1997.

A. A. Porter and R. W. Selby. Empirically guided software development using
metric-based classification trees. I[EEE Software, 7(2):46-54, Mar. 1990.

N. F. Schneidewind. Methodology for validating software metrics. IEEE Transac-
tions on Software Engineering, 18(5):410-422, May 1992.

G. A. F. Seber. Multivariate Observations. John Wiley and Sons, New York, 1984.

D. Steinberg and P. Colla. CART: A supplementary modules for SYSTAT. Salford
Systems, San Diego, CA, 1995.

J. Troster and J. Tian. Measurement and defect modeling for a legacy software
system. Annals of Software Engineering, 1:95-118, 1995.

L. G. Votta and A. A. Porter. Experimental software engineering: A report on
the state of the art. In Proceedings of the Seventeenth International Conference
on Software Engineering, pages 277-279, Seattle, WA, Apr. 1995. IEEE Computer
Society.

FAU Technical Report TR-CSE-00-06 24
A Principal Components Analysis

Software product metrics have a variety of units of measure, which are not readily com-
bined in a multivariate model. We transform all product metric variables, so that each
standardized variable has a mean of zero and a variance of one. Thus, the common unit
of measure becomes one standard deviation.

Principal components analysis is a statistical technique for transforming multivariate
data into orthogonal variables, and for reducing the number of variables without losing
significant variation. Suppose we have m measurements on n modules. Let Z be the n xm
matrix of standardized measurements where each row corresponds to a module and each
column is a standardized variable. Our principal components are linear combinations of
the m standardized random variables, Z,..., Z,,. The principal components represent
the same data in a new coordinate system, where the variability is maximized in each
direction and the principal components are uncorrelated [30]. If the covariance matrix of
Z is a real symmetric matrix with distinct roots, then one can calculate its eigenvalues,
A;, and its eigenvectors, e;,7 = 1,...,m. Since the eigenvalues form a nonincreasing
series, A\; > ... > A, one can reduce the dimensionality of the data without significant
loss of explained variance by considering only the first p components, p < m, according
to some stopping rule, such as achieving a threshold of explained variance. For example,
choose the minimum p such that 3°7_; A;/m > 0.90 to achieve at least 90% of explained
variance.

Let T be the m x p standardized transformation matrix whose columns, t;, are
defined as

tj:iforjzl,...jp (2)

N

FAU Technical Report TR-CSE-00-06 25

Let D; be a principal component random variable, and let D be an n X p matrix with

D; values for each column, j =1,...,p.
D; = 1Zt, (3)
D = ZT (4)

When the underlying data is software metric data, we call each D; a domain metric.

B Logistic Regression

Logistic regression is a statistical modeling technique where the dependent variable,
Class;, has only two possible values [8]. Independent variables may be categorical, dis-
crete, or continuous.

There are several possible strategies for encoding categorical independent variables.
For binary categorical variables, we encode the categories as the values zero and one.
Discrete and continuous variables may be used directly. Let z; be the j** independent
variable, and let x; be the vector of the i"* module’s independent variable values.

We designate a module being fault-prone as an “event”. Let fp mean fault-prone
and nfp mean not fault-prone. Let p(x;) be the estimated probability of an event, and
thus, p(x;)/(1 — p(x;)) is the estimated odds of an event. The logistic regression model

has the form

16(:{1-) -+ + b T 5
1 [— = b +b.l‘.£ -|-...+b'.’.\';‘," . mim
og (1 .,\(3)) 0 1411 Jn ()

where log means natural logarithm and m is the number of independent variables. Let b;

be an estimated parameter. Logistic regression assumes that the probability of an event

FAU Technical Report TR-CSE-00-06 26

is a monotonic function of each independent variable. The probability has the following

form.
BXP(I){) + b1$1 + ...+ bm:}:m)

5(x;) = 6
p(xi) 1 +exp(by + bizy + ... + bpzyn) (6)

Given a list of candidate independent variables and a threshold significance level,
a, some of the estimated coefficients may not be significantly different from zero. Such
variables should not be included in the final model. The process of choosing significant
independent variables is called “model selection”. Stepwise logistic regression is one
method of model selection which uses the following procedure. Initially, estimate a model
with only the intercept. Evaluate the significance of each variable not in the model. Add
to the model the variable with the largest chi-squared p-value which is better than a
given threshold significance level. Estimate parameters of the new model. Evaluate
the significance of each variable in the model. Remove from the model the variable
with the smallest chi-squared p-value whose significance is worse than a given threshold
significance level. Repeat until no variables can be added or removed from the model.
Tests for adding or removing a variable are based on an adjusted residual chi-squared
statistic for each variable, comparing models with and without the variable of interest
8].

We calculate maximum likelihood estimates of the parameters of the model, b;, using
the iteratively reweighted least squares algorithm. Other algorithms are also available
to calculate maximum likelihood estimates. This algorithm is used both in the stepwise
procedure and for final estimates of model parameters. The estimated standard deviation
of a parameter can be calculated, based on the log-likelihood function [26].

The odds ratio, ?;, is a statistic that indicates the relative effect on the odds of an

FAU Technical Report TR-CSE-00-06 27

event by a one unit change in the j* independent variable [8]. For example, suppose z;
is a binary variable with values zero or one. Let p(1) be the probability of an event when

z; = 1, and let p(0) be the probability of an event when z; = 0, other things being equal.

_ p(1)/(1 = p(1))
p(0)/(1 - p(0)

Thus, the odds of an event for an observation with x; = 1 is ¢; times the odds of an

¥; (7)

event for z; = 0. The odds ratio is estimated by
i =e” (8)
The odds ratio is a tool for interpretation of logistic regression models.
Given a logistic regression model, a module can be classified as fault-prone or not, by
the following procedure: (1) Calculate p(x;)/(1 — p(x;)) using Equation (5). (2) Assign
the module by the following classification rule.

nfp if SR> ¢

Class(x;) = (9)

fp otherwise
This rule enables a project to select its preferred balance between the misclassification
rates by choosing a parameter (. Given a candidate value of (, we estimate misclassifica-
tion rates, Pr(fp|nfp) and Pr(nfp|fp), by resubstitution of the fit data set into the model.
If the balance is not satisfactory, we select another candidate value of ¢ and estimate

again, until we arrive at the preferred (for the project.

C Nonparametric Discriminant Analysis

Nonparametric discriminant analysis is a statistical technique for predicting the class of

an observation, such as the :** software module, represented by its vector of independent

FAU Technical Report TR-CSE-00-06 28

variables, x;. Let fp mean the module is fault-prone and let nfp mean the modules is not
fault-prone.

We use stepwise model selection at a significance level, a, to choose the independent
variables in the nonparametric discriminant model [30]. The candidate variables are
entered into the model in an incremental manner, based on an F' test from analysis of
variance which is recomputed for each change in the current model. Beginning with no
variables in the model, the variable not already in the model with the best significance
level is added to the model, as long as its significance is better than the threshold («).
Then the variable already in the model with the worst significance level is removed from
the model as long as its significance is worse than the threshold (a). These steps are
repeated until no variable can be added to the model.

We estimate a discriminant function based on the fit data set. Let n; be the number
of observations in the class k € {fp, nfp}. Let 7} be the prior probability of membership
in class k, which we usually choose to be the proportion of fit observations in each class.
Let fi(x;) be the multivariate probability density giving the likelihood that a module
represented by X; is in class k. Since the density functions, fj, are not likely to conform
to the normal distribution, we use nonparametric density estimation. Let fk(x,-l)\) be
an approximation of fx(x;), where X is a smoothing parameter in this context. Let Sy
be the covariance matrix for all observations in class k, and |Si| is its determinant. Let
Ki(u|v, A) is a multivariate kernel function on vector u with modes at v. We select the

normal kernel.
Ki(ulv,\) = (2 ?rx\z)_“‘”’z|Sk|_1f{2 exp((=1/2X*)(u = v)'S; (u —v)) (10)

Let x4, = 1,...,n; represent a module in class k. The estimated density function is

FAU Technical Report TR-CSE-00-06 29

given by the multivariate kernel density estimation technique [30].
. 1
Jr(xi|A) = n_zf'{k(xiixkh A) (11)
k=1

We empirically choose a preferred value for A based on results from cross-validation using
the fit data set.
A classification rule that minimizes the expected number of misclassification is the

following.

f fp (X A T
Class(x;) = fpxeA) nfp (12)
fp otherwise

A generalized classification rule is the following.

o Fuplx)
L A

Class(x;) = (13)

fp otherwise
where (is a parameter which we choose to achieve a preferred balance between misclas-

sification rates.

D Classification And Regression Trees (CART)

The Classification And Regression Trees (CART) algorithm [1] builds a classification tree.
It is implemented as a supplementary module for the SYSTAT package [31]. We follow
terminology in the classification tree statistics literature, calling independent variables
“predictors”. We model each module with a set of continuous ordinal-scaled predictors,
such as, software product and process metrics, and a nominal-scaled dependent variable
(a “response” variable) with two categories, not fault-prone (nfp) or fault-prone (fp).
Beginning with all modules in the root node, the algorithm recursively partitions

(“splits”) the set into two leaves until a stopping criterion applies to every leaf node.

FAU Technical Report TR-CSE-00-06 30

A goodness-of-split criterion is used to minimize the heterogeneity (“node impurity”)
of each leaf at each stage of the algorithm. Further splitting is impossible if only one
module is in a leaf, or if all modules have exactly the same measurements. CART also
stops splitting if a node has too few modules (e.g., less than 10 modules). The result of
this process is typically a large tree. Usually, such a maximal tree overfits the data set,
and consequently, is not robust. CART then generates a series of trees by progressively
pruning branches from the maximal tree. The accuracy of each size of tree in the series
is estimated and the most accurate tree in the series is selected as the final classification
tree.

Early work with classification trees in software engineering selected branches by a
measure of homogeneity until a stopping rule was satisfied [28]. More recent work has
used an algorithm based on deviance [12, 32|, and an algorithm based on statistical
significance [19, 20]. CART’s default goodness-of-split criterion is the “Gini index of
diversity” which is based on probabilities of class membership [1].

Resubstitution is a method for estimating model accuracy by using the model to
classify the same modules that were the basis for building the model, and then calculating
misclassification rates. The estimated accuracy can be overly optimistic.

v-fold cross-validation is an alternative method that also uses the same modules as
were the basis for building the model, but the estimated accuracy is not biased [2, 6, 23].
The algorithm has these steps: Randomly divide the sample into v approximately equal
subsets (e.g. v = 10). Set aside one subset as a test sample, and build a tree with the
remaining modules. Classify the modules in the test subset and note the accuracy of each
prediction. Repeat this process, setting aside each subset in turn. Calculate the overall

accuracy. This is an estimate of the accuracy of the tree built using all the modules.

FAU Technical Report TR-CSE-00-06 31

The number of subsets, v, should not be small; Breiman, et al. found that ten or more
worked well [1].

CART allows one to specify prior probabilities, and costs of misclassifications. These
parameters are used to evaluate goodness-of-split of a node as a tree is recursively gen-
erated. Let 7, and 7,4, be prior probabilities of membership in the fault-prone and not
fault-prone classes, respectively, and let C'; and Cy; are the costs of Type I and Type 11
misclassifications, respectively.

Due to different costs associated with each type of misclassification, we need a way
to provide appropriate emphasis on Type I and Type II misclassification rates according
to the needs of the project. We experimentally choose a parameter ¢, which can be

interpreted as a priors ratio times a cost ratio.

- (@)

We have observed a tradeoff between the Type I and the Type II misclassification rates,
as functions of (. Generally, as one goes down, the other goes up. We estimate these
functions by repeated calculations with the fit data set. Given a candidate value of ¢, we
estimate prior probabilities 7, and 7,z by proportions in the fit data set; we set C; =1,
and we choose (' to achieve the candidate value of (. We build a tree and estimate the
Type I and Type II rates using resubstitution and v-fold cross-validation. We repeat for

various values of (, until we arrive at the preferred ¢ for the project.

FAU Technical Report TR-CSE-00-06 32
E Multiple Linear Regression

Even though we may have a long list of independent variables, it is possible that some do
not significantly influence the dependent variable. If an insignificant variable is included
in the model, it may add noise to the results and my cloud interpretation of the model.
For example, if a coefficient, b; for the j** variable in a linear model is not significantly
different from zero, then it is best to omit that term from the model. The process of
determining which variables are significant is called model selection. Of several model
selection techniques available for multiple linear regression, we use the stepwise regression
method [26], and the fit data set. Stepwise model selection is an iterative procedure. All
the candidate independent variables are specified. Significant variables are added and
insignificant variables are removed from the model on each iteration, based on an F' test.
The test is recomputed on each iteration, until no variable can be added to or removed
from the model.

Many models have a general mathematical form with parameters that must be chosen
so that the fit data set matches the model as closely as possible. This step consists of
estimating the values of such parameters. Suppose there are n observations in the fit data
set, and the subscript 7 indicates data for the i*" observation. In general, a multivariate

linear model has the following form.

i = bo+bixi+... .+ bnTin (15)
yi = bo+bixia+ ...+ bz + € (16)
where z;1,...,7;n are the independent variables’ values, by,...,b,, are parameters to

be estimated, §j; is the predicted value of the dependent variable, y; is the dependent

variable’s actual value, and e; = y; — 7; is the error for the i"* observation. We estimate

FAU Technical Report TR-CSE-00-06 33

the parameters, by, ..., b, using the least squares method. This method chooses a set of
parameter values that minimizes 31, e? [26].

When the parameters have been estimated, and given each set of independent vari-
able values, a model can calculate a value of the dependent variable. Since the inde-
pendent variables are known earlier than the actual value of the dependent variable, the

calculated value is a prediction.

F Nonlinear Regression

Many models have a general mathematical form with parameters that must be chosen
so that the fit data set matches the model as closely as possible. This step consists of
estimating the values of such parameters. Suppose there are n observations in the fit data
set, and the subscript ¢ indicates data for the i*" observation. In general, a nonlinear

model has the following form.

9 = [f(xi,b) (17)

yi = f(xi,b)+e (18)

where x; is a vector of the independent variables’ values, b is a vector of parameters
to be estimated, 7; is the predicted value of the dependent variable, y; is the dependent
variable’s actual value, and e; = y;—9; is the error for the it" observation. We estimate the
parameters, b, using the least squares method. This method chooses a set of parameter
values that minimizes Y7, e? [26].

In the nonlinear situation, a closed-form solution for b generally does not exist.

Thus, we use an iterative process to find a satisfactory set of parameters. The iterative

FAU Technical Report TR-CSE-00-06 34

process starts at some candidate set of parameter values, by, and then use the data to
compute a new set of candidate parameters that improves the squared error. There are
several iterative methods available, including steepest descent which uses the gradient,
Gauss-Newton which uses a Taylor series, Newton which uses the second derivative, and
Marquardt which combines the Gauss-Newton and steepest descent methods. Ordinarily,

these methods will converge on the same parameters.

G Poisson Regression

Multiple linear regression makes certain assumptions about the data, such as the de-
pendent variable, y, is continuous, or the variance of the residual error is homogeneous,
i.e., independent of y. These assumptions are often violated by software engineering
data. For example, the number of faults is a commonly studied software quality metric;
its values are integers. Violating assumptions may result in a multiple linear regression
model with limited predictive accuracy or unwarranted conclusions. Poisson regression
is an alternative technique that is sometimes appropriate when multiple linear regression
is not. See Myers [26] and sAs documentation [9] for details.

Poisson regression is applicable when the dependent variable, y, takes only integer
values, and the variance of the residual error may depend on y. It is based on the Poisson
probability distribution.

Pr(y) _ ()\;!)y 6—)\! (19)

where \ is a parameter, ¢t is “time”, and At = E(y) = Var(y), the expectation and the
variance of y.

Poisson models are often used in reliability studies where y(t) is the number of

FAU Technical Report TR-CSE-00-06 35

failures experienced up to time ¢. In this context, A is interpreted as the average failure
rate. In a homogeneous Poisson model, A is a constant. In a nonhomogeneous model, it
is a function of time.

A Poisson regression models a multiplicative relationship between A and independent

variables, z;,7 =1,...,m.

A = ePoehrmr | ePmom (20)

Let B3 be the vector of parameters, and let b be the vector of their estimated values. Let
x be the vector of independent variables for an observation, and let x" be its transpose.

Then the matrix notation for Equation (21) is the following.
In)=x'p3 (22)

Given a set of n observations, the parameters, 3, can be estimated from Equa-

tion (19) and (22) using maximum likelihood techniques.

t;exp(x.3))¥ ,)
Pr(lB) = PO et exp(xB)) (23)
where 7 = 1,...,n. Given the estimated parameters, b, and a data point, (¢;,x;), The
predicted value of y; is the following.
yi = t; exp(x'b) (24)

Let y be the vector of observed y; and ¥ be the corresponding vector of predicted
y; for the Fit data set. Let L(y,y) be their log likelihood function. L(y,y) represents a

perfect fit. Quality of fit is measured by deviance, defined as

FAU Technical Report TR-CSE-00-06 36

D has a x? distribution with (n — (m + 1)) degrees of freedom.

A perfect Poisson model has mean equal to its variance. Unfortunately, the estimated
variance of a Poisson regression is often larger than the mean. This is modeled by a
constant dispersion factor, ¢, where Var(y) = ¢E(y). The following is an estimate for ¢.

D

e o

Model Selection. Suppose we are considering p independent variables. Model selection
is the process of identifying which of these are significantly related to the dependent
variable. In other words, we want to identify those variables where we are confident that
their coefficients are nonzero.

Let Dy be the deviance of a model with m variables, and let ¢ be its dispersion
factor. Let D, be the deviance of a submodel that has one less variable. The asymptotic
distribution of F = (D; — Dy)/¢ is the F distribution with 1 and (n — m) degrees
of freedom, assuming that c;AS is well behaved. Type I analysis uses F' to evaluate the
significance of the variables [9].

Type 1 analysis fits a sequence of models, beginning with one that only has an in-
tercept term. Each model in the sequence has one additional variable, until all candidate
variables have been considered. When defining F', Model 0 is the current model and
Model 1 is the prior model. At each step, we test the null hypothesis that the coefficient
of the new variable is zero using the F' statistic.

Since this process depends on the order that the variables are considered, we want
to arrange the variables so that those with a large F' statistic are early in the list and
smaller ones are at the end. Therefore, we experiment with the order of the variables,

and make a Type 1 analysis for each order. When we find an order where all of the

FAU Technical Report TR-CSE-00-06 37

insignificant variables are grouped at the end, we make our model selection, choosing the

significant variables at the beginning of the list.

Identifying Outliers. Let /(y;, ;) be the individual contribution of the :** observation
to the log likelihood function £(y,¥). A deviance residual for the i observation, rp, is

defined by the following.

di = 2(lyi,yi) = Uyi, 9i)) (27)

D= ¥4 (28)
d;

rpi = Sigﬂ(yi—ﬁi)% (29)

The v/ in the denominator compensates for over dispersion. rp; is approximately nor-

mally distributed, and thus, a double tailed hypothesis test can identify outliers [24].

Removing Insignificant Variables. After removing outliers, it is possible that one or
more of the variables that were significant during model selection now have coefficients
that are approximately zero, i.e., are now insignificant. Type 3 analysis is useful to
identify such variables [9].

Type 3 analysis uses the same [statistic as Type 1 analysis. Model 0 is the full model
and Model 1 is similar with one less variable. The F' statistic can then be used to evaluate
whether the variable is still significant. Each variable is considered independently, so that
Model 0 is always the same full model.

We calculate a Type 3 analysis for each variable in the model after outliers have
been removed. If a variable is now insignificant, we remove it from the model. In other

words, we consider its coefficient to be zero.

